Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMJ Glob Health ; 8(6)2023 06.
Article in English | MEDLINE | ID: covidwho-20235345

ABSTRACT

The COVID-19 pandemic triggered a sense of vulnerability and urgency that led to concerted actions by governments, funders, regulators and industry to overcome traditional challenges for the development of vaccine candidates and to reach authorisation. Unprecedented financial investments, massive demand, accelerated clinical development and regulatory reviews were among the key factors that contributed to accelerating the development and approval of COVID-19 vaccines. The rapid development of COVID-19 vaccines benefited of previous scientific innovations such as mRNA and recombinant vectors and proteins. This has created a new era of vaccinology, with powerful platform technologies and a new model for vaccine development. These lessons learnt highlight the need of strong leadership, to bring together governments, global health organisations, manufacturers, scientists, private sector, civil society and philanthropy, to generate innovative, fair and equitable access mechanisms to COVID-19 vaccines for populations worldwide and to build a more efficient and effective vaccine ecosystem to prepare for other pandemics that may emerge. With a longer-term view, new vaccines must be developed with incentives to build expertise for manufacturing that can be leveraged for low/middle-income countries and other markets to ensure equity in innovation, access and delivery. The creation of vaccine manufacturing hubs with appropriate and sustained training, in particular in Africa, is certainly the way of the future to a new public health era to safeguard the health and economic security of the continent and guarantee vaccine security and access, with however the need for such capacity to be sustained in the interpandemic period.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19/prevention & control , Ecosystem
2.
BMJ Glob Health ; 8(6)2023 06.
Article in English | MEDLINE | ID: covidwho-20236938

ABSTRACT

Through the experiences gained by accelerating new vaccines for both Ebola virus infection and COVID-19 in a public health emergency, vaccine development has benefited from a 'multiple shots on goal' approach to new vaccine targets. This approach embraces simultaneous development of candidates with differing technologies, including, when feasible, vesicular stomatitis virus or adenovirus vectors, messenger RNA (mRNA), whole inactivated virus, nanoparticle and recombinant protein technologies, which led to multiple effective COVID-19 vaccines. The challenge of COVID-19 vaccine inequity, as COVID-19 spread globally, created a situation where cutting-edge mRNA technologies were preferentially supplied by multinational pharmaceutical companies to high-income countries while low and middle-income countries (LMICs) were pushed to the back of the queue and relied more heavily on adenoviral vector, inactivated virus and recombinant protein vaccines. To prevent this from occurring in future pandemics, it is essential to expand the scale-up capacity for both traditional and new vaccine technologies at individual or simultaneous hubs in LMICs. In parallel, a process of tech transfer of new technologies to LMIC producers needs to be facilitated and funded, while building LMIC national regulatory capacity, with the aim of several reaching 'stringent regulator' status. Access to doses is an essential start but is not sufficient, as healthcare infrastructure for vaccination and combating dangerous antivaccine programmes both require support. Finally, there is urgency to establish an international framework through a United Nations Pandemic Treaty to promote, support and harmonise a more robust, coordinated and effective global response.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Influenza Vaccines , Influenza, Human , Humans , COVID-19 Vaccines , Influenza, Human/epidemiology , Pandemics/prevention & control , COVID-19/prevention & control , Neglected Diseases
3.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2272790

ABSTRACT

Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 22 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.

4.
Vaccine ; 41(13): 2101-2112, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2272791

ABSTRACT

Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , Research
6.
Vaccine ; 39(51): 7357-7362, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1525978

ABSTRACT

Infectious diseases may cause serious morbidity and mortality in pregnant women, their foetuses, and infants; the risk associated with any newly emerging infectious disease (EID) is likely unknown at the time of its emergence. While the ongoing SARS-CoV-2 pandemic shows that the development of vaccines against new pathogens can be considerably accelerated, the immunization of pregnant women generally lags behind the general population. Guided by the priority pathogen list for WHO's R&D Blueprint for Action to Prevent Epidemics, this workshop sought to define the evidence needed for use of vaccines against EIDs in pregnant and lactating women, using Lassa fever as a model. Close to 60 maternal immunization (MI) and vaccine safety experts, regulators, vaccine developers, Lassa fever experts, and investigators from Lassa-affected countries examined the critical steps for vaccine development and immunization decisions for pregnant and lactating women. This paper reports on key themes and recommendations from the workshop. Current practice still assumes the exclusion of pregnant women from early vaccine trials. A shift in paradigm is needed to progress towards initial inclusion of pregnant women in Phase 2 and 3 trials. Several practical avenues were delineated. Participants agreed that vaccine platforms should be assessed early for their suitability for maternal immunization. It was noted that, in some cases, nonclinical data derived from assessing a given platform using other antigens may be adequate evidence to proceed to a first clinical evaluation and that concurrence from regulators may be sought with supporting rationale. For clinical trials, essential prerequisites such as documenting the disease burden in pregnant women, study site infrastructure, capabilities, and staff experience were noted. Early and sustained communication with the local community was considered paramount in any program for the conduct of MI trials and planned vaccine introduction.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Vaccines , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Female , Humans , Lactation , London , Pregnancy , Referral and Consultation , SARS-CoV-2 , Vaccine Development
8.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 63(1): 65-73, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1396373

ABSTRACT

Today's world is characterized by increasing population density, human mobility, urbanization, and climate and ecological change. This global dynamic has various effects, including the increased appearance of emerging infectious diseases (EIDs), which pose a growing threat to global health security.Outbreaks of EIDs, like the 2013-2016 Ebola outbreak in West Africa or the current Ebola outbreak in Democratic Republic of the Congo (DRC), have not only put populations in low- and middle-income countries (LMIC) at risk in terms of morbidity and mortality, but they also have had a significant impact on economic growth in affected regions and beyond.The Coalition for Epidemic Preparedness Innovation (CEPI) is an innovative global partnership between public, private, philanthropic, and civil society organizations that was launched as the result of a consensus that a coordinated, international, and intergovernmental plan was needed to develop and deploy new vaccines to prevent future epidemics.CEPI is focusing on supporting candidate vaccines against the World Health Organization (WHO) Blueprint priority pathogens MERS-CoV, Nipah virus, Lassa fever virus, and Rift Valley fever virus, as well as Chikungunya virus, which is on the WHO watch list. The current vaccine portfolio contains a wide variety of technologies, ranging across recombinant viral vectors, nucleic acids, and recombinant proteins. To support and accelerate vaccine development, CEPI will also support science projects related to the development of biological standards and assays, animal models, epidemiological studies, and diagnostics, as well as build capacities for future clinical trials in risk-prone contexts.


Subject(s)
Communicable Diseases, Emerging , Epidemics , Vaccines , Africa, Western , Animals , Disease Outbreaks , Germany , Humans
9.
Biologicals ; 71: 55-60, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1220733

ABSTRACT

The International Alliance for Biological Standardization and the Coalition for Epidemic Preparedness Innovations organized a joint webinar on the use of platform technologies for vaccine development. To tackle new emerging infectious diseases, including SARS-CoV-2, rapid response platforms, using the same basic components as a backbone, yet adaptable for use against different pathogens by inserting new genetic or protein sequences, are essential. Furthermore, it is evident that development of platform technologies needs to continue, due to the emerging variants of SARS-CoV-2. The objective of the meeting was to discuss techniques for platform manufacturing that have been used for COVID-19 vaccine development, with input from regulatory authorities on their experiences with, and expectations of, the platforms. Industry and regulators have been very successful in cooperating, having completed the whole process from development to licensing at an unprecedented speed. However, we should learn from the experiences, to be able to be even faster when a next pandemic of disease X occurs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Drug Development , SARS-CoV-2/immunology , COVID-19 Vaccines/therapeutic use , Congresses as Topic , Humans
10.
Nat Med ; 27(4): 591-600, 2021 04.
Article in English | MEDLINE | ID: covidwho-1180259

ABSTRACT

Examination of the vaccine strategies and technical platforms used for the COVID-19 pandemic in the context of those used for previous emerging and reemerging infectious diseases and pandemics may offer some mutually beneficial lessons. The unprecedented scale and rapidity of dissemination of recent emerging infectious diseases pose new challenges for vaccine developers, regulators, health authorities and political constituencies. Vaccine manufacturing and distribution are complex and challenging. While speed is essential, clinical development to emergency use authorization and licensure, pharmacovigilance of vaccine safety and surveillance of virus variants are also critical. Access to vaccines and vaccination needs to be prioritized in low- and middle-income countries. The combination of these factors will weigh heavily on the ultimate success of efforts to bring the current and any future emerging infectious disease pandemics to a close.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Communicable Diseases, Emerging/prevention & control , SARS-CoV-2/immunology , Vaccines/immunology , Cholera Vaccines/immunology , Communicable Diseases, Emerging/epidemiology , Dengue Vaccines/immunology , Health Services Accessibility , Humans , Pharmacovigilance , Typhoid-Paratyphoid Vaccines/immunology , Yellow Fever Vaccine/immunology
11.
Biologicals ; 69: 76-82, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1064875

ABSTRACT

This International Alliance for Biological Standardization COVID-19 webinar was organized to provide an update on the virology, epidemiology and immunology of, and the vaccine development for SARS-CoV-2, none months after COVID-19 was declared a public health emergency of international concern. It brought together a broad range of international stakeholders, including academia, regulators, funders and industry, with a considerable delegation from low- and middle-income countries.


Subject(s)
COVID-19 Vaccines , COVID-19 , Pandemics , SARS-CoV-2 , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Biological Products/isolation & purification , COVID-19/epidemiology , COVID-19/etiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/isolation & purification , Clinical Trials as Topic , Drug Development/trends , Europe/epidemiology , Humans , Immunity, Cellular , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Safety , World Health Organization
12.
mSphere ; 5(4)2020 07 08.
Article in English | MEDLINE | ID: covidwho-639765

ABSTRACT

Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.


Subject(s)
Henipavirus Infections , Nipah Virus/pathogenicity , Animals , Betacoronavirus/pathogenicity , COVID-19 , Congresses as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Henipavirus Infections/diagnosis , Henipavirus Infections/prevention & control , Henipavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Zoonoses/epidemiology
13.
Biologicals ; 66: 35-40, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-612146

ABSTRACT

This first International Alliance for Biological Standardization Covid-19 webinar brought together a broad range of international stakeholders, including academia, regulators, funders and industry, with a considerable delegation from low- and middle-income countries, to discuss the virology, epidemiology and immunology of, and the vaccine development for SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines , Adult , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19 , COVID-19 Vaccines , Congresses as Topic , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Design , Female , Global Health , Humans , International Cooperation , Internet , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Reference Standards , SARS-CoV-2 , Seasons , Telecommunications , Virology/trends , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL